Q	Question		Answer		Guidance
1	(a)	(i)	$f = \frac{1}{T} = \frac{1}{10 \times 10^{-3}}$ frequency = 100 (Hz)	B1	
		(ii)	$2.0 \times 10^{-2} = B \times 1.6 \times 10^{-3} \times 400$	C1	
			$B = \frac{2.0 \times 10^{-2}}{1.6 \times 10^{-3} \times 400}$	C1	
			$B = 3.1 \times 10^{-2} (T)$	A1	Allow: 2 mark for 3.1×10^{n} ; $n \neq -2$ (POT error) Answer to 3 sf is 3.13×10^{-2} (T) Special case: 12.5 scores 1 mark; number of turns omitted
		(iii)	(e.m.f. = -) rate of change of flux <u>linkage</u>	B1	Allow: $E = (-) \frac{\Delta(N\phi)}{\Delta t}$ or (e.m.f. =) gradient
			<u>Tangent</u> drawn on Fig. 3.1 at 2.5 (ms) or 7.5 (ms) or 12.5 (ms)	B1	
			Values substituted to determine the gradient. The gradient must be 12.5 \pm 1.0 (V)	B1	Alternative:maximum e.m.f. = $2\pi f \times$ maximum flux linkageC1maximum e.m.f. = $2\pi \times 100 \times 2 \times 10^{-2}$ C1maximum e.m.f. = 12.6 (V) or 4π (V)A1
	(b)		$P = \frac{V^2}{R}$		
			$P = \frac{12^2}{150}$	C1	Possible ecf from (a)(iii)
			power = 0.96 (W)	A1	
			Total	9	

Que	Question		Expected Answers		Additional guidance	
2	(a)		Electromotive force is the energy transferred (from one form of energy) to <u>electrical per</u> unit charge	B1	Allow: 'electrical energy (gained) per unit charge' Not: electrical energy per coulomb	
	(b)		Magnetic flux is the product of the (magnetic) flux density and the area (normal to the field)	B1	Allow: $\phi = BA$, where $B = (magnetic)$ flux density and $A = area$. If $\phi = BA \cos \theta$ is used, then θ must be defined as the angle (between the normal to the plane of the area and the magnetic field) Do not allow 'field strength' for 'flux density'	
	(c)	(i)	A changing (magnetic) flux is produced (in the primary coil / in the iron core)	B1	Allow: A changing (magnetic) flux density is produced (in the primary coil) but not ' <i>changing (magnetic) field</i> '	
			The iron core links this (magnetic) flux /(magnetic) flux density to the secondary coils	B1		
			The changing (magnetic) flux / (magnetic) flux density through secondary induces e.m.f. (in secondary coils)	B1	Allow: The rate of change of (magnetic) flux (linkage) induces an e.m.f. (in the secondary coil)	
		(ii)	Any <u>one</u> from: More coils / turns on secondary Less coils / turns on primary Laminate the core	B1	Not: Increase frequency of alternating supply	
	(d)	(i)	n 12	C1		
			$\frac{n_{\rm s}}{4200} = \frac{12}{230}$ (Any subject) number of turns = 219 or 220	A1	Note: A bald answer 219 or 220 scores 2 marks	
		(ii)	current = $(12.0 - 11.8)/0.35$ current = 0.57 (A)	C1 A1		
			$P = VI$ or $P = I^2 R$ or $P = V^2 / R$	C1		
			$P = 0.2 \times 0.57$ or $P = 0.57^2 \times 0.35$ or $P = 0.2^2 / 0.35$ power = 0.114 (W) or 0.11 (W)	A1	Possible e.c.f. from (ii)1	
			Total	12		

Que	Question		Expected Answers	Marks	Additional guidance
3	(a)		Down(wards)	B1	Note: Can be on Fig. 5.1
	(b)		(Fleming's) left-hand rule	B1	Allow: Thumb in direction of force, first finger in direction of (magnetic) field and second finger in direction of (conventional) current
	(c)	(i)	force = BIL = 0.080 × 4.0 × 5.0 × 10 ⁻² force = 0.016 (N)	B1	
		(ii)	reading = 2.500 – 0.016 reading = 2.484 (N) The force on <u>core/magnets</u> is up(wards)	B1 B1	
			(According to Newton's third law) the forces (on the rod and steel core/magnets) are equal <u>and</u> opposite	B1	Allow: 'up and down' as equivalent to 'opposite'
	(d)		Resistance increases by a factor of 4 Current decreases by a factor of 4 The force decreases by a factor of 4	C1 C1	
			force = 0.004 (N)	A1	Possible e.c.f. from (c)(i) Note: force = (c)(i)/4 can score full marks Special case: Allow 1 mark for (resistance doubles, current is halved, hence) force = 0.008 (N)
			Total	9	

Question		tion	Expected Answers		Additional Guidance	
4	а	(i)	uniformly spaced, vertical parallel lines must begin and end on the plates with a minimum of three lines	B1	ignore any edge effects	
			arrow in the correct direction down	B1		
		(ii)	$E = V / d \qquad E = 60 / 5 \times 10^{-3} \\ = 12000 (V m^{-1})$	A1		
	b	(i)	Use of energy qV and kinetic energy = $\frac{1}{2}$ mv ²	M1		
			$v = [(2qV)/m]^{1/2}$			
			$v = [(2 \times 3.2 \times 10^{-19} \times 400)/6.6 \times 10^{-27}]^{1/2}$	M1		
			$v = 1.97 \times 10^5 (m s^{-1})$	A0		
		(ii)	a = F / m $a = Eq / m$	C1	Both required for the mark	
			a = $(12000 \times 3.2 \times 10^{-19}) / 6.6 \times 10^{-27})$			
			$= 5.82 \times 10^{11} (m s^{-2})$	A1		
		(iii)	1 $t = (16 \times 10^{-3}) / 2 \times 10^{5}$	M1	Answer will depend on number of sf used by candidate.	
			= 8 x 10 ⁻⁸ (s)	A0		
			2 $s = \frac{1}{2} a x t^2 = \frac{1}{2} [5.82 x 10^{11} x (8 x 10^{-8})^2]$	C1	Using $u = 2 \times 10^5$ scores 0/2	
			= 1.86 x 10 ⁻³ (m)	A1	Allow slight variation in answers that follow from the candidates working	

С	Eq = Bqv	C1	
	$B = E / v = 12000 / 2 \times 10^5$	C1	
	= 0.060 (T)	A1	Allow one sf unless answer is 0.061 when using v =1.97 x 10^5
d	velocity (produced by p.d / 400 V) is less	B1	
	force due the magnetic field is reduced / Bqv is less / force due to the electric field is unchanged hence beam deflects <u>down</u>	B1	Allow the resultant force is downward Allow towards the lower plate
	Total	[15]	