Question			Answer	Marks	Guidance
1	(a)	(i)	$f=\frac{1}{T}=\frac{1}{10 \times 10^{-3}}$ $\text { frequency = } 100(\mathrm{~Hz})$	B1	
		(ii)	$\begin{aligned} & 2.0 \times 10^{-2}=B \times 1.6 \times 10^{-3} \times 400 \\ & B=\frac{2.0 \times 10^{-2}}{1.6 \times 10^{-3} \times 400} \\ & B=3.1 \times 10^{-2}(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: 2 mark for $3.1 \times 10^{\mathrm{n}} ; \mathrm{n} \neq-2$ (POT error) Answer to 3 sf is $3.13 \times 10^{-2}(\mathrm{~T})$ Special case: 12.5 scores 1 mark; number of turns omitted
		(iii)	(e.m.f. =-) rate of change of flux linkage Tangent drawn on Fig. 3.1 at $2.5(\mathrm{~ms})$ or $7.5(\mathrm{~ms})$ or 12.5 (ms) Values substituted to determine the gradient. The gradient must be 12.5 ± 1.0 (V)	B1 B1 B1	Allow: $E=(-) \frac{\Delta(N \phi)}{\Delta t}$ or (e.m.f. $=$) gradient Alternative: maximum e.m.f. $=2 \pi f \times$ maximum flux linkage $\quad \mathrm{C} 1$ maximum e.m.f. $=2 \pi \times 100 \times 2 \times 10^{-2}$ maximum e.m.f. $=12.6(\mathrm{~V})$ or $4 \pi(\mathrm{~V})$
	(b)		$\begin{aligned} & P=\frac{V^{2}}{R} \\ & P=\frac{12^{2}}{150} \\ & \text { power }=0.96(\mathrm{~W}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (a)(iii)
			Total	9	

Question			Expected Answers	Marks	Additional guidance
2	(a)		Electromotive force is the energy transferred (from one form of energy) to electrical per unit charge	B1	Allow: 'electrical energy (gained) per unit charge’ Not: electrical energy per coulomb
	(b)		Magnetic flux is the product of the (magnetic) flux density and the area (normal to the field)	B1	Allow: $\phi=B A$, where $B=$ (magnetic) flux density and $A=$ area. If $\phi=B A \cos \theta$ is used, then θ must be defined as the angle (between the normal to the plane of the area and the magnetic field) Do not allow 'field strength' for 'flux density'
	(c)	(i)	A changing (magnetic) flux is produced (in the primary coil / in the iron core) The iron core links this (magnetic) flux /(magnetic) flux density to the secondary coils The changing (magnetic) flux / (magnetic) flux density through secondary induces e.m.f. (in secondary coils)	B1 B1 B1	Allow: A changing (magnetic) flux density is produced (in the primary coil) but not 'changing (magnetic) field' Allow: The rate of change of (magnetic) flux (linkage) induces an e.m.f. (in the secondary coil)
		(ii)	Any one from: More coils / turns on secondary Less coils / turns on primary Laminate the core	B1	Not: Increase frequency of alternating supply
	(d)	(i)	$\frac{n_{\mathrm{s}}}{4200}=\frac{12}{230} \quad \text { (Any subject) }$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: A bald answer 219 or 220 scores 2 marks
		(ii)		C1 A1 C1 A1	Possible e.c.f. from (ii)1
			Total	12	

Question			Expected Answers	Marks	Additional guidance
3	(a)		Down(wards)	B1	Note: Can be on Fig. 5.1
	(b)		(Fleming's) left-hand rule	B1	Allow: Thumb in direction of force, first finger in direction of (magnetic) field and second finger in direction of (conventional) current
	(c)	(i)	$\begin{aligned} & \text { force }=\text { BIL }=0.080 \times 4.0 \times 5.0 \times 10^{-2} \\ & \text { force }=0.016(\mathrm{~N}) \end{aligned}$	B1	
		(ii)	$\begin{aligned} & \text { reading }=2.500-0.016 \\ & \text { reading }=2.484(\mathrm{~N}) \end{aligned}$ The force on core/magnets is up(wards) (According to Newton's third law) the forces (on the rod and steel core/magnets) are equal and opposite	B1 B1 B1	Allow: 'up and down' as equivalent to 'opposite'
	(d)		Resistance increases by a factor of 4 Current decreases by a factor of 4 The force decreases by a factor of 4 force $=0.004(\mathrm{~N})$	C1 C1 A1	Possible e.c.f. from (c)(i) Note: force = (c)(i)/4 can score full marks Special case: Allow 1 mark for (resistance doubles, current is halved, hence) force $=0.008(\mathrm{~N})$
			Total	9	

Question			Expected Answers	Marks	ignore any edge effects
4	a	(i)	uniformly spaced, vertical parallel lines must begin and end on the plates with a minimum of three lines arrow in the correct direction down	B1 B1	
		(ii)	$\begin{aligned} \mathrm{E}=\mathrm{V} / \mathrm{d} \quad \mathrm{E} & =60 / 5 \times 10^{-3} \\ & =12000\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \end{aligned}$	A1	
	b	(i)	Use of energy qV and kinetic energy $=1 / 2 \mathrm{mv}^{2}$ $\begin{aligned} & v=[(2 \mathrm{qV}) / \mathrm{m}]^{1 / 2} \\ & v=\left[\left(2 \times 3.2 \times 10^{-19} \times 400\right) / 6.6 \times 10^{-27}\right]^{1 / 2} \\ & v=1.97 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	M1 M1 A0	
		(ii)	$\begin{aligned} a=F / m & \quad a=E q / m \\ a & \left.=\left(12000 \times 3.2 \times 10^{-19}\right) / 6.6 \times 10^{-27}\right) \\ & =5.82 \times 10^{11}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	C1 A1	Both required for the mark
		(iii)		$\begin{aligned} & \text { M1 } \\ & \text { A0 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	Answer will depend on number of sf used by candidate. Using $u=2 \times 10^{5}$ scores $0 / 2$ Allow slight variation in answers that follow from the candidates working

c	c	$\begin{aligned} & \mathrm{Eq}=\mathrm{Bqv} \\ & \mathrm{~B}=\mathrm{E} / \mathrm{v}=12000 / 2 \times 10^{5} \\ &=0.060(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow one sf unless answer is 0.061 when using $\mathrm{v}=1.97 \times 10^{5}$
d	d	velocity (produced by p.d / 400 V) is less force due the magnetic field is reduced / Bqv is less / force due to the electric field is unchanged hence beam deflects down	B1 B1	Allow the resultant force is downward Allow towards the lower plate
		Total	[15]	

